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1 SATISFIABILITY

1.1 Recap

Last time, we talked about the de�nition of the Boolean satis�ability problem.
We also talked about several kinds of algorithms for solving them. Types?

Stochastic Local Search, Systematic: DPLL.

1.2 Applications

According to Bart Selman (1996), algorithms can solve SAT problems with 10k variables
and 1M constraints!
With problems this size, it becomes practical to encode real-world problems in SAT.
For example, problems from planning, scheduling, protein folding, graph coloring, and gen-
eral CSPs can be converted to SAT.

2 SAT ENCODINGS

2.1 Graph Coloring

To ex our encoding muscles, let's start with graph coloring:

� Given a graph and a set of colors, color all nodes, but no adjacent nodes can have the
same color.

Example: 3� 3 grid.
Can write this as a CSP? Need to know the variables, domains for the variables, and the
constraint matrices.

Variables are the nodes of the graph. Edges are the same. Domains are all the same,
with values the complete set of colors. Constraint matrices are n� n (if there are n
colors) consisting of all 1s except 0s down the diagonal.
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2.2 SAT as a CSP

How about 2-SAT as a CSP?
Example: (x1 + x2)(x1 + x2)(x1 + x3)(x1 + x3) (x4 + x2)(x4 + x2)(x3 + x4)(x3 + x4).
What are the variables, domains, and constraint matrices?

Variables are variables, domains are T and F . Any two variables that share a clause
have an edge between them. The constraint matrix depends on the logical relationship
between the variables. Can \and" matrices together.

2.3 3-SAT as a CSP

What happens when we go to general 3-SAT?

Need more than just matrices for constraints.

Introduce variables for clauses. Value corresponds to which literal makes it true. Example:
C1 : (x1 + x2 + x3).

2.4 CSP as SAT

How would you express CSP as SAT?

� Given: variables V ; domains D(x) for all x 2 V ; constraint matrices M(x; y; u; v) for
all x; y 2 V , u 2 D(x), and v 2 D(y).

� Need: Boolean variables, clauses.

Make each CSP variable-value pair a Boolean variable: P (x; v) for all x 2 V and v 2 D(x).
Let n be the number of CSP variables and k be the number of values in each domain. Total
Boolean variables: nk.
Constraints:

� Each variable has at least one value.

For all x 2 V :
P

v2D(x) P (x; v).

� Each variable has at most one value.

For all x 2 V , v 2 D(x), u 2 D(x)� fvg: P (x; v) + P (x; u).

� No prohibited pairs of values.

For all x; y; u; v such that M(x; y; u; v) = 0: P (x; u) + P (y; v).

Total constraints: n + nk(k � 1) +m, where m is the total number of prohibited pairs of
values (no more than n2k2).

2



3 BATTLESHIPS

3.1 Encoding a Complex Problem

Now that we're starting to get good at converting things to SAT, let's try something really
challenging.
Because of the nature of the complexity class NP, almost all discrete logic puzzles can be
expressed as SAT problems.
We'll take an interesting one from Games magazine.

3.2 Battleships Instructions

Each grid represents a section of ocean in which the entire eet is hiding. This eet consists
of one battleship (four grid squares in length), two cruisers (each three squares long), three
destroyers (each two squares long), and four submarines (one square each). The ships may be
oriented either horizontally or vertically, and no two ships will occupy adjacent grid squares,
even diagonally . The digits along the right side of and below the grid indicate the number
of grid squares in the corresponding rows and columns that are occupied by vessels.
In each of the puzzles below, one or more shots have been taken to start you o�. These may
show water (indicated by a wavy lines), a complete submarine (a circle), or the middle (a
square) or the end (a rounded-o� square) of a longer vessel. The puzzles get harder as you
go. Only Battleships genuises will reach the rank of admiral by �nding all the eets.

3.3 Battleships

Ships:

� Battleship: /��.

� Cruiser: /�.

� Destroyer: /.

� Submarine: }

� Water: �

2
1
1
2

O 2
3

/ 2
1
5

O 1
3 2 2 4 4 1 1 2 0 1
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3.4 Objects

There are a number of important sets:

� Rows: i 2 f1; : : : ; 10g.

� Columns: j 2 f1; : : : ; 10g.

� Parts: f4,O,.,/,�,}g.

� Direction: f across (0), down (1) g.

� Ship Number: k 2 f 1,2,3,4 g.

3.5 Variables

� Filled: for all i in Rows, j in Columns, f(i; j) if position i; j contains a ship.

� Part: for all i in Rows, j in Columns, pa(i; j), pb(i; j), and pc(i; j) encode the type of
ship part in the given grid cell. i; j contains a ship.

� Battleship: bi(i), bj(j), bd encodes the position and direction of the battleship.

� Cruisers: ci(k; i), cj(k; j), cd(k) encodes the position and direction of each cruiser,
k 2 f1; 2g.

� Destroyers: di(k; i), dj(k; j), dd(k) encodes the position and direction of each destroyer,
k 2 f1; 2; 3g.

� Submarines: si(k; i), sj(k; j) encodes the position of each submarine, k 2 f1; 2; 3; 4g.

Total variables: 10�10+3(10�10)+(10+10+1)+2(10+10+1)+3(10+10+1)+4(10+10) =
606.

3.6 Initial Conditions

The starting information in the grid forces some of the variables to become true.
Ship parts are encoded using the pa, pb, and pc variables:

part pa pb pc

4 0 0 0
O 0 0 1
. 0 1 0
/ 0 1 1
� 1 0 0
} 1 0 1

For example: f(5; 8), pa(5; 8), pb(5; 8), pc(5; 8), f(7; 2), pa(7; 2), pb(7; 2), pc(7; 2), f(10; 5),
pa(10; 5), pb(10; 5), pc(10; 5).
Water can be encoded as well by making an f variable false.
Total Constraints: Never more than rows by columns by 4 variables (400). Rarely over 30.
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3.7 Footprints

Each ship leaves a \footprint" on the water. That is, grid cells take on a particular value
depending on where the ships are.
Example: di(2; 6)dj(2; 5)dd(2) ! f(5; 4). This says that a destroyer at (6,5) going across
means that there is water at (5,4).
This can be made into a clause by negating the antecendent:

di(2; 6)dj(2; 5)dd(2)! f(5; 4)
Total: 2� 7� 10� 18+ 2� 2� 8� 10� 15+ 3� 2� 9� 10� 12+ 4� 10� 10� 9 = 17400.

3.8 Counts

Each row and column (20 altogether) must have the number of �lled squares sum to the
number indicated.
We can introduce some more variables (3� 20 = 60), to represent the sum. Then, a set of
clauses (3� 20 = 60) match the actual total to the desired total.
There are lots of ways to compute the sum, that vary in the number of variables and clauses
they add. If you have an e�cient addition circuit, it can be encoded in SAT!
Here's the simplest thing I could come up with. Say we want to know if � of n Boolean
variables x1; : : : ; xn are on.

� Create variables �(i; t) for 2 � i � n and 0 � t � � .

� We de�ne �(i; t) to indicate whether
Pi

j=1 xj = t (this is a real sum this time, not an
\or").

� Ultimately, we make a clause �(n; �) to force the sum constraint.

Base case: �(1; 1) = x1, �(1; 0) = x1, �(1; t) = 0 for t > 1, �(i;�1) = 0 for all i.

� �(i�1; t�1)xi ! �(i; t), �(i�1; t)xi ! �(i; t), �(i�1; t�1)xi ! �(i; t), �(i�1; t)xi !
�(i; t).

� We don't need exclusion constraints on �(i; �).

For Battleships, we get 20 � 8 � 9 = 1440 new variables and 4 � 20 � 8 � 9 = 5760 new
clauses.

3.9 All Else Empty

How do we state that anywhere there isn't a ship is water?

Don't have to. There are 20 boat pieces total, and all are forced to appear by row
and column counts. Nothing extra will be allowed.

So, total variables: 2046. Total constraints: 23560.
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3.10 Encoding Inference Rules

Solving shortcuts you discover can be encoded as inference rules.
For the planning domain, this speeds things up tremendously!

4 USING THE SOLVER

4.1 Input Format

� Variables given numbers from 1 to n.

� Variable negation shown by negating the variable number.

� Lines are zero terminated (not for tableau, unfortunately).

� Comment lines begin with `c'.

� First content line has \p cnf n m" where n is the number of variables andm the number
of clauses.

� After that, it's one clause per line.

Example:

c generated by makewff, seed= 702008999

p cnf 4 8

1 -2 -4 0

1 -2 4 0

1 2 -3 0

1 2 3 0

-1 -2 3 0

-1 -3 4 0

-1 2 -4 0

-2 -3 -4 0

4.2 Output Format

If a satisfying assignment is found, output is the assignment (using -solcnf ag):

v 1

v -2

v -3

v -4
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